
A Geometric Approach for Efficient Licenses
Validation in DRM

Amit Sachan1, Sabu Emmanuel1, and Mohan S. Kankanhalli2

1 School of Computer Engineering, Nanyang Technological University, Singapore
2 School of Computing, National University of Singapore, Singapore

amit0009@ntu.edu.sg, asemmanuel@ntu.edu.sg, mohan@comp.nus.edu.sg

Abstract. In DRM systems contents are distributed from the owner to
consumers, often through multiple middle level distributors. The owner
issues redistribution licenses to its distributors. The distributors using
their received redistribution licenses can generate and issue new redistri-
bution licenses to their sub-distributors and new usage licenses to con-
sumers. For the rights violation detection, all the newly generated li-
censes must be validated. The validation process becomes complex when
there exist multiple redistribution licenses for a content with the dis-
tributors. In such cases, it requires the validation using an exponential
number of validation equations, which makes the validation process much
computation-intensive. Thus to do the validation efficiently, in this pa-
per we propose a method to geometrically derive the relationship be-
tween different validation equations to identify the redundant validation
equations. These redundant validation equations are then removed using
graph theory concepts. Experimental results show that the validation
time can be significantly reduced using our proposed approach.

1 Introduction

Prolific growth of the Internet technology over the last decade has made the
Internet a convenient mode of digital contents distribution. However, it has also
increased the fear of illegal contents redistribution and usage. Digital Rights
Management(DRM)systems[5][9][6][1][2] emerge as one of the possible solutions
to prevent illegal redistribution and usage. DRM systems often involve multiple
parties such as owner, multiple distributors and consumers[5][9]. The owner gives
the rights for redistribution of contents to distributors by issuing redistribution
licenses. The distributors in turn can use their received redistribution license
to generate and issue new different types of redistribution licenses to their sub-
distributors and new usage licenses to the consumers. A redistribution license
allows a distributor to redistribute the content to its sub-distributors and con-
sumers as per the permissions and constraints [11] specified in the redistribution
license that it has received. Thus, as part of the rights violation detection, it is
necessary to validate these newly generated licenses against the redistribution
licenses with the distributors.

The format of both redistribution(LD) and usage licenses (LU) for a content
K is defined as: (K; P ; I1, I2, ..., IM ; A), where P represents a permission(e.g.

2

play, copy, rip, etc.[4][9]), Ii represents the ith (1≤i≤M) instance based con-
straint and A represents aggregate constraint. Instance based constraints in the
redistribution licenses are in the form of range of allowed values for distribu-
tion, such as region allowed for distribution, period of distribution, etc. Instance
based constraints in usage licenses, such as expiry date of license, region allowed
for play etc. may be in the form of a single value or range. The range/value of
an instance based constraint in further generated licenses using a redistribution
license must be within the respective instance based constraint range in it[9].
The aggregate constraint decides the number of permission P counts that can
be distributed or consumed using a redistribution license or usage license re-
spectively. For aggregate constraints, the sum of the aggregate constraint counts
in all the licenses generated using a redistribution license must not exceed the
aggregate constraint’s value in it. For an issued license to be valid, it must sat-
isfy both instance based and aggregate constraints in the redistribution license
which is used to generate it. A validation authority does the validation of newly
generated licenses based on instance based and aggregate constraints.

For business flexibility reasons, distributors may need to acquire multiple
redistribution licenses for the same content. In case of multiple redistribution
licenses, the validation becomes complex[10]. This is because a newly generated
license can satisfy all the instance based constraints in more than one redis-
tribution license(say a set of redistribution licenses S). So, for the aggregate
constraints validation, the validation authority needs to select a redistribution
license from set S. However, selecting a redistribution license randomly for the
validation from S may cause potential loss to distributors as we discuss in sec-
tion 2. To avoid a random selection, a better aggregate validation approach
using validation equations is proposed in [10](equations are described in section
2). Validation equations use the whole set of redistribution license S instead of
randomly selecting a redistribution license from it.

Doing the validation using the validation equations, the loss to distributors
can be reduced but the approach requires the validation using an exponential
number (to the number of redistribution licenses present for media)of validation
equations. Also each equation may contain up to an exponential number of sum-
mation terms. This makes the validation process computationally intensive and
necessitates to do the validation efficiently. In [10] an efficient offline aggregate
validation method using the validation tree was proposed. The validation tree
uses a prefix tree[7][8] based structure to calculate summation terms in each val-
idation equation efficiently. But, still it requires the validation using exponential
number of validation equations. Thus, in this paper we propose a method to
geometrically derive the relationship between different validation equations to
identify the redundant validation equations. These redundant validation equa-
tions are then removed by modification in original validation tree using graph
theory concepts. Both theoretical analysis and experimental results show that
our proposed method can reduce the validation time significantly.

Rest of this paper is organized as follows. In section 2, we discuss preliminaries
required for this work. In section 3, a geometric approach for efficient validation is

3

discussed. In section 4, we modify the original validation tree to use the algorithm
proposed in section 3. The performance of our proposed method is analyzed in
section 5. Finally, the paper is concluded in section 6.

2 Preliminaries

In this section we first discuss the problem of validation in case of multiple
redistribution licenses. Then we give an overview of the validation tree[10].

2.1 Validation in Case of Multiple Licenses

In case of multiple received redistribution licenses at the distributors, a newly
generated license can satisfy all the instance based constraints in more than one
redistribution license(say a set of redistribution licenses S). For the validation
purpose, the validation authority needs to select a redistribution license from
S. Selecting one redistribution license randomly out of multiple redistribution
licenses may cause potential loss to the distributors as illustrated using example
1.

Example 1. Consider five redistribution licenses acquired by a distribu-
tor to distribute the play permissions according to two instance based con-
straints(validity period T , and region allowed R) and aggregate constraint A.
L1
D = (K;Play; I1D : T = [10/03/09, 20/03/09], R = [Asia,Europe];A1

D =
2000)
L2
D = (K;Play; I2D : T = [15/03/09, 25/03/09], R = [Asia]; A2

D = 1000)
L3
D = (K;Play; I3D : T = [15/03/09, 30/03/09], R = [America]; A3

D = 3000)
L4
D = (K;Play; I4D : T = [15/03/09, 15/04/09], R = [Europe]; A4

D = 4000)
L5
D = (K;Play; I5D : T = [25/03/09, 10/04/09], R = [America]; A5

D = 2000)

Now, the distributor generates a usage license L1
U = (K; Play; I1U : T =

[15/03/09, 19/03/09], R = [India];A1
U = 800). L1

U satisfies all instance based
constraints for L1

D and L2
D. Let the validation authority randomly picks L2

D

for validation then remaining counts in L2
D will be 200(i.e. 1000-800). Next, let

the distributor generates L2
U = (K;Play; I2U : T = [21/03/09, 24/03/09], R =

[Japan];A2
U = 400). L2

U satisfies all the instance based constraints only for L2
D.

The validation authority will now consider L2
U as invalid as L2

D now cannot be
used to generate more than remaining 200 counts. In this case, a better solution
would be to validate L1

U using L1
D, and L2

U using L2
D. This will result in both

L1
U and L2

U as valid licenses. Thus, the challenge is to do the validation such
that the distributors can use their redistribution licenses in an intelligent way.

A Method for Validation: In this section, we present the symbols(see ta-
ble 1) used and validation equations. Details about the derivation of validation
equations can be found in [10].

An issued license is said to belong to a set S of redistribution licenses if it
satisfies all the instance based constraints in all redistribution licenses in set S.

4

Table 1: List of Symbols
Symbol Explanation

SN The set of all N redistribution licenses for a content i.e. SN = [L1
D, L2

D, ..., LN
D].

SBr[S] The rth subset of set S of redistribution licenses. If the set S contains k

redistribution licenses then r ≤ 2k − 1, and k ≤ N .

C[S] Aggregate of the permission counts in all previously issued licenses which
belong to the set S of redistribution licenses.

A[S] Sum of aggregate permission counts in all redistribution licenses in the set S.

C⟨S⟩ LHS of the validation equation for the set S.

For example, L1
U in example 1 belongs to the set {L1

D, L2
D}. C[S] denotes the

sum of permission counts in all previously issued licenses that belongs to the set
S of redistribution licenses. Let the table 2 represents the licenses issued using
redistribution licenses L1

D, L2
D,..., L5

D in example 1. After L6
U being issued, the

value of C[{L1
D, L2

D}], C[{L2
D}], C[{L1

D, L2
D, L4

D}], C[{L3
D, L5

D}] and C[{L5
D}]

will be 840, 400, 30, 800 and 20 respectively. A[S] denotes the sum of aggregate
permission counts in all the redistribution licenses in the set S. For example,
A[{L1

D, L2
D, L3

D}] for the redistribution licenses in example 1 will be sum of
aggregate permission count in L1

D, L2
D and L3

D i.e. 2000+ 1000+ 3000= 6000.

Table 2: Table of log records
Issued Licenses Set(S) Set Counts(C)

L1
U {L1

D, L2
D} 800

L2
U {L2

D} 400

L3
U {L1

D, L2
D} 40

L4
U {L1

D, L2
D, L4

D} 30

L5
U {L3

D, L5
D} 800

L6
U {L5

D} 20

If there exists N received redistribution licenses for a content then we need
to do the validation using 2N − 1 validation equations [10], one for each subset
of SN (see table 1 for explanation). The validation equation for the rth subset of
SN , SBr[SN], is of the form:

2m−1∑
l=1

C[SBl[SBr[SN]]] ≤ A[SBr[S
N
]].

where,m = |SBr[SN]|, and 1 ≤ m ≤ N (1)

The LHS of the equation 1 does the summation of counts for the sets that
are subset of the set SBr[SN]. Since there can be 2m − 1 subsets excluding the
null set of a set containing m redistribution licenses therefore the summation

5

has a limit from 1 to 2m− 1. The RHS is the summation of aggregate constraint
counts in all redistribution licenses in the set SBr[SN].

Example 2. consider five redistribution licenses in example 1. Since there
are five redistribution licenses therefore N=5 in this case and total 25 − 1=31
validation equations are required. The validation equation for an example set
{L2

D, L3
D, L4

D} will be C[{L2
D}]+C[{L3

D}]+C[{L4
D}]+C[{L2

D, L3
D}]+ C[{L2

D,
L4
D}]+C[{L3

D, L4
D}]+C[{L2

D, L3
D, L4

D}]≤ A[{L2
D, L3

D, L4
D}].

From table 1, LHS of equation 1 can also be referred as C⟨SBr[SN]⟩. There-
fore, further in this paper, in short, we will refer validation equation for a set
S(by replacing SBr[SN] with S in equation 1) as: C⟨S⟩ ≤ A[S].

Complexity of Validation: If N number of redistribution licenses are present
with a distributor then 2N−1 validation equations are possible. Let a newly gen-
erated license satisfies all instance based constraints in k redistribution licenses
out of the total N redistribution licenses. The set formed by these k redistri-
bution licenses will be a subset of 2(N−k) sets thus it will be present in 2(N−k)

validation equations. So, we need to do the validation using 2(N−k) validation
equations. Validation using such a large number of validation equations every
time a new license is issued is computationally intensive. Also, the violation of ag-
gregate constraints is not a frequent event as the received redistribution licenses
generally have sufficient permission counts to generate thousands of licenses. So,
instead of doing validation every time a new license is issued, the aggregate vali-
dation is done offline by collecting the logs of the sets of redistribution licenses(to
which the issued licenses satisfies all instance based constraints) and permission
counts in issued licenses. The format of the log is as shown in table 2.

2.2 Overview of Validation Tree

In this section, we briefly discuss about construction of validation tree using the
log records and validation using validation tree[10].

Validation Tree Construction: As shown in figure 1, each node in the val-
idation tree stores the following fields: name of a redistribution license(L), a
count(C) and links to its child nodes. The count value C determines the count
associated with the set formed by the redistribution license in the node and all
its prefix nodes(nodes in the path from root node to the current node) in the
same branch. For example, count=840 for the node root→L1

D→L2
D implies that

the set count associated with the set {L1
D, L2

D} is 840. In the validation tree
child nodes of a node are ordered in increasing order of their indexes. To gen-
erate the validation tree initially a root node is created. Validation tree is then
expanded by inserting the log records using the insertion algorithm(algorithm
1). The insertion algorithm one by one reads the records in the log and then one
by one reads the indexes of redistribution licenses in each record. In algorithm 1,
let the record to be inserted currently be given by R=[r, R′], where r is the first

6

redistribution license and R′ is the set of remaining redistribution licenses and
let count denotes the set count associated with record R. Algorithm 1 inserts the
record R in the validation tree with the root node initially denoted by T . The
algorithm traverses the validation tree according to the redistribution licenses
in the log record and inserts/adds the count in the last node traversed for the
record. Figure 1 shows the validation tree generated for the records in table 2.

root

0:1
DL

840:2
DL

0:3
DL

800:5
DL

400:2
DL

30:4
DL

20:5
DL

Fig. 1: The validation tree

Algorithm 1 Insert(T , R, count)

1. Sequentially traverse the child nodes of T until all child nodes are traversed or we
find a child T ′ such that T.L≥r.
2. If T ′.L=r then go to step 4.
3. Else add a node T ′ such that T ′.L=r and T ′.C=0 as the child node of T (in the
order).
4. If R′=null set then T ′.C= T ′.C+count. Else, call Insert(T ′, R′, count).

Validation Using Validation Tree: Algorithm 2 is used to do the validation
for all possible validation equations. The parameter i takes care that validation
is done for all possible sets. If N redistribution licenses are present, it takes
value from i=1 to i=2N − 1. Each value of i corresponds to a particular set of
redistribution licenses(and hence validation equation), which is determined by
bits=1 in binary format of i, e.g. i=7 has first, second and third bits from LSB
as 1 and rest as 0. So, it represents validation equation for set {L1

D, L2
D, L3

D}.
The algorithm calculates and compares LHS(CV) and RHS(AV) of each

validation equation(see equation 1) to determine whether an equation is valid
or not. The RHS of each validation equation is calculated using an array A of
size N containing aggregate constraint values in all N received redistribution
licenses. The jth element, A(j), of A contains the aggregate constraint value in
the jth received redistribution license. Since the set of redistribution license is
decided by the position of bits=1 in i in algorithm 2 so we only need to add

7

the aggregate constraint values for the redistribution licenses that correspond
to bits=1. It is taken care by left shift and AND operation in algorithm 2.
Parameter licNumber in algorithm 2 is calculated to facilitate the traversal of
validation tree. It is equal to the number of redistribution licenses corresponding
to the current validation equation(or number of bits=1 in i). The LHS for the
validation equation for a set S does the summation of set counts for set S and
all its subsets. It is calculated by traversing the validation tree. Detailed about
tree traversal algorithm are out of scope of this paper and can be found in [10].

Algorithm 2 Validation(root, A, N)

Temporary Variables:AV=0, CV=0
for i=1 to 2N − 1 do

licNumber=0.
for j=1 to N do

if (1<< (j − 1) AND i) ̸= 0 then
/* <<: left shift operator */

AV=AV+ A(j).
licNumber=licNumber+1;

Call CV=VaLHS(root, i, licNumber).

if CV ≤ AV then
Declare(Valid Equation).

else
Declare(Invalid Equation)

3 Proposed Efficient Validation Approach

In this section, we present a geometric approach to identify the redundant vali-
dation equations and a method to remove the redundant validation equations.

3.1 Geometric Representation of Licenses

If there are M number of instance based constraints in the licenses then each
redistribution /usage license can be represented as an M dimensional hyper-
rectangle e.g. figure 2 shows five redistribution licenses and two usage licenses
represented in a 2-dimensional space. The set of redistribution licenses to which
an issued license can be instance validated is given by the set of redistribution
licenses whose hyper-rectangles completely contain the hyper-rectangle formed
by the issued license. For example, in figure 2, hyper-rectangle formed by L1

U is
completely within L4

D only. Thus, the set of redistribution licenses to which L1
U

can be instance based validated is given by {L4
D}. However, L2

U is not completely
within any of the 5 redistribution licenses so it cannot be instance based validated
using any of the 5 redistribution licenses and it is treated as invalid.

8

10

20

30

40

50

60

70

D2

100 200 300 400 500 600 D1

1
DL

2
DL

3
DL

4
DL

5
DL

0

1
UL

2
UL

Fig. 2: Representation of 5 received redistribution licenses with two constraints

3.2 Redundant Validation Equations

In this section we first define overlapping redistribution licenses and non-overlapping
sets of redistribution licenses. Then with the help of theorems 1 and 2, we present
a method to identify the redundant validation equations.

Overlapping Redistribution Licenses. Two redistribution licenses, Lj
D

and Lk
D, with instance based constraints {Ij1 , I

j
2 ,..., I

j
M} and {Ik1 , Ik2 ,..., IkM}, are

overlapping if Ijm ∩ Ikm ̸= ∅, ∀ m≤M , where M is the number of total instance
based constraints. Geometrically, two redistribution licenses Lj

D and Lk
D are

overlapping if all their constraint dimensions have an overlap. Thus, in figure 2,
licenses L1

D and L2
D are overlapping but L1

D and L4
D are non-overlapping.

Non Overlapping Sets. Two sets S1 and S2 of received redistribution
licenses are said to be non overlapping if S1 and S2 contain different licenses(i.e.
S1 ∩ S2=∅) and any of the constraint ranges in the license in the set S1 does
not overlap with any license in the set S2. For example, the sets S1={L1

D, L2
D}

and S2={L5
D} are non overlapping in figure 2 as neither L1

D nor L2
D(in set S1)

overlaps with L5
D(in set S2).

Theorem 1. If all the redistribution licenses in a set S do not have a common
overlapping region then count(C[S]) associated with that set will always be 0.

Proof. If all the redistribution licenses in a set S do not have a common re-
gion then any valid issued license cannot be simultaneously within the hyper-
rectangles formed by all redistribution licenses in the set. Thus, the count value
for the set will always be 0. For example, redistribution licenses L1

D, L2
D, and L3

D

in figure 2 do not form a common region and hence the hyper-rectangle formed
by any issued license cannot be inside the hyper-rectangles of L1

D, L2
D, and L3

D

simultaneously. So, C[{L1
D, L2

D, L3
D}] will always be 0.

Corollary 1.1. Set S of received redistribution licenses formed by taking at
least one redistribution license from two or more non overlapping sets of received

9

redistribution licenses will always have set count equal to 0. This is because if we
take at least 1 received redistribution licenses from two different non overlapping
sets of received redistribution licenses then a common region cannot be formed
by all the received redistribution licenses in S.

Theorem 2. If a set S containing n received redistribution licenses can be rep-
resented with m number of non overlapping sets(Si∩Sj = ∅, 1 ≤ i < j ≤ m ≤ n)
of received redistribution licenses such that S1∪S2∪ ...∪Sm = S then the valida-
tion equation for the set S can be expressed as the sum of validation equations for
the sets S1, S2, ... and Sm. Validation equation for a set Si is: C⟨Si⟩ ≤ A[Si].

C⟨S⟩ = C⟨S1⟩+ C⟨S2⟩+ C⟨S3⟩+ ...+ C⟨Sm⟩ ≤
A[S] = A[S1] +A[S2] +A[S3] + ...+A[Sm] (2)

Thus, if the validation equations for the sets S1, S2, ... and Sm are already
validated then we do not need to validate the equation for the set S.

Proof. m number of non overlapping sets of received redistribution licenses are
represented by S1, S2, ...Sm, where 2 ≤ m ≤ N . Now consider a set formed by at
least one received redistribution license each from m

′
(2 ≤ m

′ ≤ m)sets out of
total m sets. As Si∩Sj = ∅ therefore using corollary 1.1, any such set formed will
always have the set count value equal to 0. Thus, all the sets which are created
using taking at least one received redistribution license each from anym

′
sets out

of m sets will always have count value equal to 0. So, C⟨S⟩ will be only due to the
sets formed due to redistribution licenses within each of the m sets individually.
Thus, C⟨S⟩ can be written as: C⟨S⟩ = C⟨S1⟩ + C⟨S2⟩ + C⟨S3⟩ + ... + C⟨Sm⟩.
Also, the sets S1, S2, ... and Sm are non overlapping and S1 ∪S2 ∪ ...∪Sm = S.
Therefore, A[S] can be written as: A[S] = A[S1] +A[S2] +A[S3] + ...+A[Sm].

Thus, equation 2 is correct and it can be obtained by summation of the
validation equations for the individual sets S1, S2, ... and Sm. Hence if the vali-
dation equations for the sets S1, S2, ... and Sm are evaluated then the validation
equation for the set S can be removed.

For example, the redistribution licenses in figure 2 can be divided in two
groups, with group 1 and group 2 containing the redistribution licenses (L1

D, L2
D,

L4
D) and (L3

D, L5
D) respectively. According to theorem 2, if validation equations

for all subsets of the sets {L1
D, L2

D, L4
D} and {L3

D, L5
D} are evaluated indepen-

dently then we need not evaluate the validation equations for any set generated
by taking at least one redistribution license from each group. So, equations for
the sets {L1

D, L3
D}, {L1

D, L2
D, L3

D}, etc. need not be evaluated.

3.3 Identification of Disconnected Groups

To use the basis discussed in the previous sub-section, we need to identify the
disconnected groups of redistribution licenses. In this section, we present an
algorithm to find the disconnected groups of redistribution licenses.

10

We use a graph[12][3] G=(V , E) to identify the disconnected groups of re-
distribution licenses, where V is the set of vertices and E is the set of edges in
G. As shown in figure 3, each redistribution license is represented using a vertex
in G. There is an edge between the vertices corresponding to the ith and jth

redistribution licenses if they are overlapping. We represent the graph using an
adjacency matrix Adj of size N X N . The entry in the ith row and jth column,
Adji,j , is 1 if the ith and jth redistribution licenses are overlapping else it is 0.
Figure 3 shows the graph and matrix Adj for redistribution licenses in figure 2.

1
DL

2
DL 3

DL

4
DL 5

DL

0 1 0 0 0

1 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

1
DL

1
DL

2
DL

2
DL
3
DL

3
DL

4
DL

4
DL 5

DL

5
DL

Fig. 3: Graph and adjacency matrix for redistribution licenses in figure 2

We perform depth first search(DFS)[12] in algorithm 3 on G to identify the
number of groups of redistribution licenses and redistribution licenses in each
group. The DFS starts from the node corresponding to the first redistribution
license. It finds all the nodes that are directly or indirectly(through other nodes)
connected to the node corresponding to the first redistribution license. All such
nodes form one group of redistribution licenses. Next, the algorithm sequentially
searches for a redistribution license, which is not present in any previously formed
groups. Then, finds all the nodes that are directly or indirectly connected to the
node corresponding to the searched redistribution license. The process continues
until a group is allocated to every redistribution license. To perform DFS, two
arrays viz. Visited and Group of size N and N X N , respectively, are initialized
with each element equal to 0 in algorithm 3. Array Visited keeps information
about all the nodes traversed in the graph during the DFS. Array Group is modi-
fied by the algorithm and after completion of algorithm it stores the information
about the redistribution licenses in different groups of redistribution licenses.
Each row in Group corresponds to a group of redistribution licenses and stores
the information about the redistribution licenses present in that group. If jth

redistribution license is in the ith group then Groupi,j=1 else it is 0. Please note
that the number of rows in Group are N as maximum number of groups formed
can be N(assuming no connected licenses). If there are g number of groups then
only first g rows give information about groups and redistribution licenses in
each group. For example, the first two rows in array Group for the graph in fig-
ure 3 are given by (1, 1, 0, 1, 0) and (0, 0, 1, 0, 1) as the redistribution licenses in
the first and second group are (L1

D, L2
D, L4

D) and (L3
D, L5

D) respectively. Rest of

11

the rows have all entries 0. Algorithm 3 also calculates array GroupSize, which
determines the number of redistribution licenses in each group.

Algorithm 3 Group Formation

int g=0.
array V isited: Size N . All elements are initialized to 0.
array Group: Size NXN . All elements are initialized to 0.
array GroupSize: Size N . All elements are initialized to 0.
Adj: Adjacency matrix of the graph.
for i=1 to i ≤ N do

if V isited[i]=0 then
g=g+1.
Call Depth first(i, g).

Print(Number of groups=g).
Subroutine:Depth first(i, k)
{
Group[k][i]=1, V isited[i]=1
GroupSize[k]=GroupSize[k]+1.
for j=i+1 to i ≤ N do

if Adj[i][j]=1 and V isited[j]=0 then
Call Depth first(j, k).

}

4 Validation Algorithm

In this section, we modify the validation tree [10] to enable it to use the ap-
proach in section 3 for efficient validation. We do this by dividing the original
validation tree in g parts and modifying the index of the nodes in each newly gen-
erated validation tree, where g is the number of groups of redistribution licenses
determined by algorithm 3.

4.1 Division of Validation Tree

Using corollary 1.1, a set formed by taking at least one redistribution license from
two or more groups out of the total g groups will have set count equal to 0. So,
in the log records any such set cannot exist. This implies that in validation tree
any branch will not contain the redistribution licenses from two or more groups
out of the total g groups. For example, in figure 2, any issued license cannot
belong to the sets {L1

D, L3
D} or {L1

D, L3
D, L5

D}. So these will not be present in
the logs and there cannot be branches root→L1

D→L3
D or root→L1

D→L3
D→L5

D.
Thus, the validation tree can be divided into g independent parts; each part
contains the nodes corresponding to the redistribution licenses in a particular
group. Algorithm 4 (by calling Separation(root, g)) is used to divide the original

12

validation tree into g new validation trees. The algorithm checks for the group
to which a child node of the root node belongs. If a child node belongs to the jth

group then link the child nodes to the jth newly generated validation tree with
root node as rootj . Figure 4 shows two validation trees obtained after division
of the validation tree in figure 1.

Algorithm 4 Separation(T , g)

Initialize m number of root nodes.
Let the root of the ith validation tree be defined as rooti.
foreach Child of T do

Let current child be T ′

if T ′.index ∈ Group[j] then
Link T ′ as child node of rootj .

0:1
DL

830:2
DL

0:3
DL

800:5
DL

400:2
DL

30:4
DL

20:5
DL

1root
2root

Fig. 4: Division of Validation tree

4.2 Modification of Indexes

In this step, the indexes of the nodes in each new validation tree are modified.
This is to ensure that if Nk(=GroupSize[k], calculated in algorithm 3) redistri-
bution licenses are in the kth group then the indexes of nodes in the kth validation
tree vary from 1 to Nk, which is required for the validation algorithm (algorithm
2). Algorithm 5 is used to modify the indexes for each validation tree. To mod-
ify the indexes of the nodes in the kth validation tree (with root node rootk),
algorithm Modification(rootk, Ak) is called. The algorithm calculates and uses
an array named positionk to modify the indexes. If a redistribution license(say
jth) is in the kth group then the value stored at positionk[j] determines the new
index of the jth redistribution license. The original index is replaced by the new
index in the last step in algorithm 5. For instance, consider array position2 for
the second validation tree in figure 4. According to algorithm 5, it will be (0, 0,

13

1, 0, 2). So, the indexes 3 and 5 in the nodes of the second validation tree in
figure 4 are replaced by 1 and 2 respectively in figure 5. The validation trees in
figure 4 after modification of indexes are shown in figure 5.

Algorithm 5 Modification(rootk, Ak)

array Group: Same as calculated in algorithm 3.
array positionk: size N . All elements are initialized to 0.
p=1.
for j=1 to N do

if Group[k][j]=1 then
positionk[j]=p.
Ak[p]=A[j]
p=p+1.

Traverse the kth validation tree.
for Each node traversed(except rootk) do

Let the index of the node be given by index.
Replace index by positionk[index].

For each group, we also need to calculate the array containing the aggregate
constraint values in the redistribution licenses in the group. Let it be Ak for
the kth group (corresponding to kth validation tree). The size of array Ak is
given by Nk, where Nk is the number of redistribution licenses in the kth group.
Ak is derived using the initial array A(see section 2.2) containing aggregate
constraint counts for all redistribution licenses. The procedure for derivation
of Ak using A is mentioned in algorithm 5. After the modification of indexes
and calculation of aggregate constraint array, we can directly use the valida-
tion algorithm(algorithm 2) in section 2.2 for each validation tree. So, we call
Validation(rootk, Ak, Nk) for each value of k≤ g, where g is the total number
of groups of redistribution licenses.

0:1
DL

830:2
DL

0:1
DL

800:2
DL

400:2
DL

30:3
DL

20:2
DL

1root 2root

Fig. 5: Modification of Indexes

14

The validation time performance gain of our proposed approach depends on
the number of groups formed and number of redistribution licenses in each group.
If Nk number of redistribution licenses are present in the kth group then 2Nk −1
validation equations are needed for the kth group. Therefore, the total number
of validation equations required to validate will be

∑g
k=1(2

Nk − 1). Whereas,
without using our approach the total number of validation are 2N −1. Thus, the
approximate performance gain(G) can be given as:

G ≈ 2N − 1∑g
k=1(2

Nk − 1)
(3)

The value of G varies from 1 to (2N − 1)/N for m=1 to m=N . Thus, the
performance gain always remains greater than or equal to 1.

As an illustration, consider the five redistribution licenses in example 1. These
redistribution licenses can be divided in two groups (group1:(L1

D, L2
D, L4

D) and
group2:(L3

D, L5
D)). So, the approximate gain in this case would be (25−1)/((23−

1)+(22 − 1))=3.1 times.

5 Performance Analysis

In this section, we analyze the theoretical and experimental performance of our
proposed algorithm in terms of validation time complexity, storage space require-
ments, and validation tree division and modification time. All the experiments
were performed on Intel(R) core(2) 2.40 GHZ CPU with 2 GB RAM. All the
programs are written in Java. To perform the experiments, first we created a
number of redistribution licenses and issued licenses. The set of redistribution
licenses for which an issued license satisfies all instance based constraints along
with the aggregate constraint counts is saved in the log records. For the ex-
periments, each redistribution license is assumed to contain 4 instance based
constraints and aggregate constraint count in between 5000 and 20000. Each
issued license is assumed to contain permission counts in between 10 and 30.
The number of log records in our experiments varies from about 600 for n=1
redistribution license to 22000 for n=35 redistribution licenses.

A. Validation Time Complexity: First, we show the variation of number of
groups of redistribution licenses with the number of redistribution licenses(N)
in figure 6. The number of groups in our experiments varies from 1 to 5 for
different values of N . As in figure 6, the number of groups may remain same
increase or decrease after addition of a new redistribution license. For example,
let in figure 2 a new redistribution license L6

D is added. The number of groups
will remain same if L6

D is connected to redistribution licenses in only one group
out of two existing groups. The number of groups will increase(increased to 3)
if L6

D is not connected to redistribution licenses in any group. The number of
groups will decrease(decreased to 1) if L6

D is connected to redistribution licenses
in both groups.

15

0 10 20 30 40
1

2

3

4

5

6

Number of redistribution licenses (N)

N
um

be
r o

f d
iff

er
en

t g
ro

up
s

Fig. 6: Variation of number of groups

Figure 7 shows a comparative analysis of validation time(VT) required using
our proposed method with the approach in [10]. To show that the time required
for division(DT) of the original validation tree is small as compared to VT , we
also plot the curve for VT+DT . From the experiments, it can be observed that
using our proposed method the validation time is significantly reduced. Also, the
effect of DT becomes very small as compared to VT for N>2.

To show whether the result is in accordance with equation 3, we also compare
the theoretical(using equation 3) and experimental gain in figure 8. We observe
that the experimental gain is always greater or equal to the theoretical gain. This
is because when we divide the validation tree in g parts, we only traverse one
validation tree out of g validation trees. Due to this some redundant traversals
required in the original validation tree are not required.

0 5 10 15 20 25 30 35
10

−5

10
0

10
5

10
10

Number of redistribution licenses (N)

V
al

id
at

io
n

tim
e(

in
 m

S
ec

)

Our proposed Approach(V
T
)

Our proposed Approach(V
T
+D

T
)

Using only validation tree

Fig. 7: Validation Time Complexity

16

0 5 10 15 20 25 30 35
10

0

10
1

10
2

10
3

10
4

Number of redistribution licenses (N)

G
ai

n

Theoretical gain

Experimental gain

Fig. 8: Theoretical Vs. Experimental Gain

B. Construction Time of Data Structure: The construction time of the
data structure is the sum of validation tree construction time(CT) and time
required for division(DT) of the original validation tree. In comparison to [10],
the additional time required is DT . The time required to divide the validation
tree includes the time required to identify the groups of redistribution licenses
using graph and traverse the child nodes of the root node. Figure 9 shows the
comparison between the time required to insert 1 log record and time required
for division of validation tree. The time required for the division of validation tree
is only 3-4 times as compared to time required for insertion of a single record.
But, the insertion process generally requires thousands of log records insertion
whereas division of validation tree is performed only once. So, the overhead due
to the validation tree division is very small.

0 5 10 15 20 25 30 35
0

1

2

x 10
−4

Number of redistribution licenses (N)

V
al

id
at

io
n

tim
e(

in
 m

S
ec

)

Insertion of 1 log record
Division of Validation Tree

Fig. 9: Insertion time complexity

17

C. Storage Space Requirement: Storage Space requirement is equal to the
space required to store the validation tree(s). Figure 10 compares the storage
space required for storing new validation trees after the division of original val-
idation tree with the original validation tree. As no new nodes(except the root
nodes) for the validation trees generated after the division of validation tree so
the storage space requirement will also be almost same for both original valida-
tion tree and validation trees formed after division.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of redistribution licenses (N)

S
to

ra
ge

 S
pa

ce
(in

 K
B

)

Representation using validation tree
Our proposed Approach(after division)

Fig. 10: Storage space complexity

6 Conclusion

In this paper, we presented an efficient method of doing license validation in
DRM systems by removing the redundant validation equations. For this pur-
pose, first we proposed a geometry based approach to identify the redundant
validation equations. Then we removed the redundant validation equations by
grouping of redistribution licenses and division of the validation tree. The theo-
retical analysis and experimental results show that the proposed method can do
the validation much efficiently as compared to doing using the original validation
tree. The experiments show that the time required for identification of redun-
dant validation equations and division of the validation tree is very small. Also,
the storage and insertion time complexities are almost same as that required for
original validation tree based validation method.

Acknowledgment: Thanks to the Agency for Science, Technology and Re-
search (A-STAR), Singapore for supporting this work under the project ”Dig-
ital Rights Violation Detection for Digital Asset Management” (Project No:
0721010022).

18

References

1. C. Conrado, M. Petkovic, and W. Jonker. Privacy-preserving digital rights man-
agement. In Secure Data Management(SDM), pages 83–99, 2004.

2. E. Diehl. A four-layer model for security of digital rights management. In Pro-
ceedings of the 8th ACM workshop on Digital rights management, pages 19–28,
2008.

3. J. Gross and J. Yellen. Handbook of Graph Theory and Applications. CRC press,
2003.

4. M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A policy language
for distributed usage control. Lecture notes in computer science, 4734:531–546,
2007.

5. S. O. Hwang, K. S. Yoon, K. P. Jun, and K. H. Lee. Modeling and implementation
of digital rights. The Journal of Systems and Software, 73(3):533–549, 2004.

6. R. Iannella. Digital rights management (DRM) architectures. D-Lib Magazine,
7(6), 2001.

7. D. E. Knuth. The art of computer programming, volume 3: sorting and searching.
Addison Wesley Longman Publishing Co., Inc. Redwood City, CA, USA, 1998.

8. G. Liu, Hongjun Lu, W. Lou, Yabo Xu, and J. X. Yu. Efficient mining of fre-
quent patterns using ascending frequency ordered prefix-tree. Data Mining and
Knowledge Discovery, 9(3):249–274, 2004.

9. A. Sachan, S. Emmanuel, and M. S. Kankanhalli. Efficient license validation
in MPML DRM architecture. In 9th ACM workshop on digital rights manage-
ment(DRM’09), Chicago, pages 73–82, 2009.

10. A. Sachan, S. Emmanuel, and M. S. Kankanhalli. Efficient aggregate licenses
validation in DRM. In Database Systems for Advanced Application(DASFAA(2)),
Tsukuba, Japan, pages 313-319, 2010.

11. R. Safavi-Naini, N. P. Sheppard, and T. Uehara. Import/export in digital rights
management. In Proceedings of the 4th ACM workshop on Digital rights manage-
ment, pages 99–110. ACM New York, 2004.

12. D. West. Introduction to graph theory. Prentice Hall Upper Saddle River, NJ,
2001.

